
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1531
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Internet Applications Security Testing:
Manual VS Automatic Approach

Md. Shafiul Alam Chowdhury, Md. Emrul Hasan, Md. Shahadot Hossain

Abstract— Over the last few years there has been a significant increase in the use of Web Applications that deal with private information
like social security numbers, account numbers, address, credit card numbers and passwords. Due to this increase, malicious hackers are
making these web applications their target of attacks. Two approaches are used by different organizations to evaluate the security of their
web applications. Some organizations use automated tools for finding vulnerabilities in their web applications while others do it manually by
security professionals.

In this case study a comprehensive research has been carried out to investigate the results of both manual and automated approaches
used for evaluation of web application security. The advantages and disadvantages of each approach are discussed and an attempt is
made to suggest the best solution. Our suggested best solution combines the automated tools with the expertise of security professionals.
Further we evaluate our suggested solution by developing a state of the art tool as a part of this study. The tool is named “Proxy Security
Evaluation Tool” and the results obtained from the tool has been presented and analyzed. Conclusion and suggestions for future studies
are also presented at the end.

Index Terms— Internet and worldwide Web, Open Web Application Security Project (OWASP), Web Haking Methodology, Proxy security
evaluation tool, SQL, Manual Testing, Denial of Service Attack (DoS)

—————————— ——————————

1 INTRODUCTION
illions of people throughout the world use internet for
various activities including financial transactions, pur-
chasing/selling variety of goods and services, and per-

forming research. These activities are carried out through web
applications and with each transaction private information
including names, social security numbers, phone numbers,
account numbers, addresses, credit card numbers and pass-
words are transferred from one place to another and are also
stored in various locations. This information must be protect-
ed from unauthorized access. As companies are rushing to-
wards web applications for selling items to users, malicious
hackers are likewise rushing to find out vulnerabilities in these
web applications. The increase in the number of attacks on
web sites is negatively impacting the companies trying to do
business over the web. The target of attacks on web applica-
tions is to steal the sensitive information (business secrets,
credit card numbers, passwords etc) that are stored in applica-
tions and the associated databases with them. Today network
security has matured and has more protection against web
hackers. Thus hackers are looking for an easy way to penetrate
into systems and hence their target is web applications

through port 80. Thus the use of firewalls or SSL can not pro-
tect against the attacks on web applications.

According to Gartner Inc. “Over 75% of attacks are occurring
due to web applications”. One of the major reasons for this
tremendous increase in web application attacks is the vulnera-
bilities which exist in these applications. This tremendous in-
crease in web applications vulnerabilities and their exploita-
tion is forcing many organizations to evaluate the security of
their existing web applications. The area of web application
security has gained more focus in the recent years. Two of the
well-known groups formed for this purpose are:

1.1 Web Application Security Consortium:

It is an international group of experts, industry practitioners
and organizational representatives that produces open source
and best practices security standards for World Wide Web.

1.2 OPEN WEB APPLICATION SECURITY PROJECT
(OWASP)

This group is dedicated towards finding and fighting the causes
of insecure software. It produces free, unbiased, opensource
documentation, tools and standards in the area of web
application security. Most organizations use penetration testing
for evaluating the security of their web applications. Some
organizations use manual approach while others rely on
automated tools. Both of these approaches have advantages and
disadvantages. Manual testing is time consuming and requires

M

——————————————
• Md. Shafiul Alam Chowdhury, Assistant professor & Chairman, Depart-

ment of Computer Science & Engineering, Uttara University, Bangladesh,
Email : shafiul.a.chowdhury@gmail.com

• Md. Emrul Hasan, Senior Lecturer, Department of Computer Science &

Engineering, Uttara University, Bangladesh,
Email:emrul87@gmail.com

• Md. Shahadot Hossain, Assistant Professor, Department of Computer

Science & Engineering, Uttara University, Bangladesh.
Email:shahadot_bdm@yahoo.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1532
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

a lot of effort from security personnel performing the tests.

In contrast automated tools are very fast, efficient and cost
effective. But most of these tools are efficient only in finding
some specific set of technical vulnerabilities like SQL Injection
or cross site scripting. Another major problem with these tools
is their inability to maintain a session with web
server/application while performing the tests, resulting in a
different (sometime invalid) state of the application for the
following tests. There has been a significant development in the
automated tools for testing web applications security. But still
the area is emerging and no single tool can address all problems
related to web application security. It has been historically
proven that neither automated tools nor manual testing alone
can spot all kinds of vulnerabilities in web applications.

In order to provide a comprehensive solution for detecting web
application vulnerabilities, a combination of manual and
automated testing approach is needed. In this way security
personnel are equipped with a tool that can reduce much of
their work load. Using this combined approach can address
most of the problems that exist when automatic tools are used
alone. Also it can facilitate personnel in testing the security of a
vast array of web applications in significantly reduced amount
of time.

2 PROBLEM
There is lack of a comprehensive solution that can spot all
kinds of vulnerabilities in a web application in a quick, effi-
cient and cost effective manner. Automatic tools for assess-
ment of web application security alone cannot efficiently find
out all potential vulnerabilities and often results in false posi-
tives. Also most of the available tools (whether commercial or
free) cannot maintain a session with the web server, while the
tests are in progress. Manual approach that requires a human
to traverse the entire site is time consuming and introduces
human errors.

3 GOAL
The goal of this case study is to investigate the results of com-
bining this manual and automated approach by developing a
semi automated proxy security evaluation tool that automates
the security testing of web applications and at the same time
give control of the testing process to the test performer. The
tool is also expected to maintain a session with the webserv-
er/web application while the tests are in progress. This semi-
automated proxy security evaluation tool with the help of a
security analyst is expected to eliminate the problems that can
result by using automated or manual approach alone.

4 AUDIENCE
The proxy security evaluation tool is primarily intended for
security consultants/analysts working with web application
security; however web application developers can also benefit
from it by improving their code to eliminate the vulnerabilities
that the tool finds in their web applications.

5 LIMITATIONS

The limitations Listed:
• Proxy security evaluation tool will work only with the

Internet Protocol HTTP/HTTPS.
• The platform for the proxy security evaluation tool will be

Windows.
• Automatic Web Crawling function will not be

implemented from scratch. In case it is needed, some open
source web crawler will be embedded in the tool.

• The Proxy Security Evaluation Tool (PSET) will not have
any security functions itself.

6 RESEARCHMETHODOLOGY
The overall approach followed for carrying out the research is
divided into the three phases; Research type, Literature Re-
view, Development of Proxy Security Evaluation Tool (PSET).

6.1 Type of Research

A research method can be divided in to two categories:

• Inductive
• Deductive

In deductive approach the researcher has an idea or a guess
(hypothesis) of the solution to the problem. A hypothesis is in
the form of “If X then Y. X is the independent variable that is
manipulated to see how Y the dependent variable reacts.” i.e
the hypothesis is empirically tested using experiments and the
solution is analyzed. While an inductive approach starts with
the collection of empirical data as the researcher has no
idea/guess of the solution to the problem. From empirical
data conclusions are drawn based on the methodological and
systematic analysis.

A research can also be classified as:

• Qualitative
• Quantitative

Qualitative research is descriptive and inductive where the
researcher is concerned about the process primarily rather
than the outcomes or products. In this case the researcher
makes abstractions, concepts, hypothesis and theories from
the details. On the other hand a quantitative approach begins
with hypothesis and theories. It deals with prediction, collec-
tion and presentation of data, experimentation and component
analysis. Our research is based on deductive and quantitative

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1533
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

approach because we have a hypothesis that the combination
of manual and automatic tools for web application security
testing will solve the problem.

6.2 Literature Review

The first phase of the study is carrying out an intensive litera-
ture review in order to understand the common techniques for
hacking web applications as well as the assessment tools for
the security of these applications. The study begins with the
understanding of the general approach taken by web hackers
for attacking a web application. The study moves from general
web hacking methodology to the in depth analysis of specific
techniques like SQL Injection, Cross site scripting etc used for
attacking web applications. Following the analysis of common
web hacking methods, the manual and automated testing ap-
proach for web applications is compared. Next some well
known available tools (both free and commercial) for web ap-
plication assessments are studied and tested. Following the
analysis of well known tools for web applications security, the
two approaches (manual and automatic) for testing web appli-
cation security are evaluated and the best of both approaches
is presented. The sources of study consist of latest books,
magazines, articles, publications in the area of web application
security.

6.3 Development of Proxy Security Evaluation Tool

The important and crucial phase of the study is the actual im-
plementation of proxy security evaluation tool that can fit in
the combined approach for web application security testing.
The proxy security evaluation tool will be developed using the
rapid prototyping strategy. Prototyping is a technique in
which the system is developed in small iterations. Each itera-
tion adds a set of features to the over all system. For develop-
ing the proxy security evaluation tool, first a prototype is de-
veloped with the basic features that can work as a simple
HTTP proxy.

Next the prototype is tested for its functionality based on the
chosen features. If any feature of the prototype is not function-
al, the prototype is modified until it works properly. An itera-
tion is completed once the developed prototype has all the
features defined at the start of the iteration. The next iteration
begins by defining additional features for the tool. The fea-
tures are selected on the basis of the combining the advantages
of automatic and manual approach for web application securi-
ty. While selecting the features for the proxy security evalua-
tion tool, the input is also taken from the analysis of well
known available tools. This process continues until the tool is
enhanced with all the features that can help the security ana-
lyst to successfully use it for web application security testing.

6.4 Analyses of Results

The last and the most important step of the study is to analyze
the results achieved during the testing process of the proxy
security evaluation tool. The tests are analyzed thoroughly to

draw any conclusions about the achievement of the study goal
and solution of the problem. In this phase of the study, the
result of combining manual and automated testing approaches
for web application security is evaluated. Any problems or
discrepancies found during the analysis are discussed here
and the recommended future research is described here.

7 WEB HACKING METHODOLOGY

I Hackers use variety of approaches for attacking a web appli-
cation. In General, Web hacking methodology includes the
following steps:

7.1 Profile the Infrastructure

The first step in web hacking is to get information about the
target web infrastructure. It is helpful prior to the attack to get
Information about the transport used, types and number of
web servers, ports used for running web servers, load balancer
etc.

7.2 Attack the Web Server

After getting knowledge about infrastructure, next step is to
find out vulnerabilities in web server and try to exploit them.
Once the type of web server is known, it is easy to find out the
vulnerabilities that may exist in the web server. The ongoing
research on web server’s vulnerabilities helps the attackers to
exploit them and take control over the web server.

7.3 Survey the Application

If no vulnerabilities are found in the Web server, hackers then
shift towards the Web application. Careful examination of the
web application is necessary for hackers to proceed.

They look for information about application technologies de-
ployed (Java, ASP, CGI etc), directory structure, types of au-
thentication, restricted contents in the website, nature of data-
bases (backends) etc. This helps the attacker to make a com-
plete picture of the contents, components and flow of the web-
site. Manual inspection along with some automated tools like
“lynx” and “Wget” for gathering this information and docu-
menting the application structure can be used.

7.4 Authentication Mechanism

Once the type of authentication mechanisms and restricted
contents are found, next step is to get access to those restricted
contents through bypassing or breaking the authentication
mechanism. Attackers can use different techniques including
password guessing, stealing session IDs etc to bypass or break
authentication mechanisms. Unvalidated inputs can be a great
advantage for applying attacks like SQL Injection to break the
authentication mechanism.

7.5 Authorization Scheme

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1534
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Authorization comes after a user is authenticated. Attackers
use various techniques to get unauthorized access to files and
other objects. Some of the common methods used to bypass
authorization scheme are directory traversal, changing user
principle, requesting hidden objects, escalating privileges and
executing SQL commands etc. Typically input fields related to
userid, username, group access, file names, cost etc in HTTP
requests are modified to perform this attack. The attacker
needs to know how session management is handled by the
application. The components responsible for tracking the users
identify and roles should be identified. Important areas to look
for are Profiles, Shopping Carts, Checkout and change pass-
word forms.

7.6 Functional Analysis

To apply a successful attack, it is necessary to carefully ana-
lyze each function of the web application. For example com-
ponents responsible for customer’s order input or confirma-
tion should be identified and checked for fault injection (input
validation). By understanding each component of the web
application, an attacker can apply more targeted attacks and
sometime can uncover very easy ways to hack the application.

7.7 Exploit Data connectivity

Almost every web application use one or more databases on
backend with which the web application interact. Most web
applications accept user inputs and use them in the commands
for retrieving data from the database. If these inputs are not
properly validated, an attacker can insert commands instead
of normal data in the input fields and can execute those com-
mands on the database server. This type of attack is known as
SQL Injection that not only enables the attacker to get unau-
thorized access to information but also execute dangerous op-
erating system commands through database server.

7.8 Attack Management Interface

Attacking management interface is a different method than
the above discussed methods, as in this case the entry point of
an attacker is different. Most web application has support for
remote web application administration. This support for re-
mote web application administration allows the administra-
tors to maintain servers, contents and back-end databases re-
motely. For this purpose a port is kept open on the server
which is a point of interest for attackers.

7.9 Attack the Client

Web applications are different from self-contained applica-
tions where all the code is stored locally and execution is per-
formed in a closed environment. In web applications one part
of source code can reside on client side while other part can
reside on server side. Attackers in most cases target the client
side, as it is easy to attack, especially when the input valida-
tion is performed only on client side and there is no cross

checking at the server side. Attacks like Cross site scripting,
session hijacking etc are most commonly used by attackers.

7.10 Denial of Service Attack

When the attacker fails to compromise the system in any of the
above mentioned ways, he tries to launch a Denial of Service
(DoS) in order to affect the availability of the system. Attackers
think that if they cannot get into the system, they will not let
others to use the web application. In DoS, large set of requests
are sent to the web site by the attacker which denies the legit-
imate user’s requests.

7.11 Remove Logs and leave

If the attacker succeeds to enter the system, he does his job
(copying/deleting/overwriting directories and files etc) and
then removes all the system logs from which he can be traced.
After removing the logs he leaves the system.

8 Web Application Attack Methods
Most companies are now moving towards the web for
delivering their services, this has caused the attackers to pay
most attention to identify and exploit vulnerabilities in web
applications.

8.1 Unvalidated Input and Client Side Validation

Attacking client is considered an easy attack by web hackers.
There are two reasons: one is that the application may accept
input from users without validation, and the other is that
input validation is usually performed only on client side. Web
applications are different from the ordinary self contained
applications where all code is stored on the client side. In web
application all inputs/interactions are stored either on server
side or on client side. Storing the source code (especially that
portion of code which is related to validation of user inputs) or
other inputs on client side can make the life of the attackers
easy. Attackers can review the client side code and find
vulnerabilities in it.

Many web applications allow users to make choices about
different things. For example choosing between Jobs, Gender,
types of Credit Cards, Country names etc. This facility is
usually provided in the form of user interface controls which
consist of textboxes, combo boxes, radio buttons, list boxes etc.
Appropriate choice of the interface control element is
important from the developer’s perspective. These control
elements vary depending on the restrictions that they can
impose. For example a text box control is less restrictive as
compared to a combo box control. A user can enter anything
in the text box control while the combo box control presents
some limited set of options to the user from which the
selection is to be made. The use of these controls varies
depending on the situation, for example if the user is asked to
enter their credit card number then a text box must be
provided for this purpose not a combo box. In case of the
textbox if the application directly accepts user input without
checking for its validity then it is called Unvalidated input and
can be used by attackers to launch various attacks. Lets say

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1535
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

that the developer wants to put some validation mechanism to
assure that the user does not enter any illegal values in the
textbox, for example in case of credit card numbers the user
must be restricted to enter digits only. Further the number of
digits entered can be restricted too. But how to do it? This can
be done by providing validation functions that check the
values entered by the user for their validity. Now the question
is that where these validation functions should be placed?
They can be placed either on the client side or server side or
on both sides. The biggest mistake most developers make is
that they place the validation functions only on the client side
and think that they have validated the inputs properly. But
they are wrong because client side validation can be easily
bypassed using a proxy like Paros or Webscarab, leaving the
web application without any protection against malicious
parameters.

First step in this attack is to identify all input vectors in the
web application and carefully analyze input restrictions that
each user interface control implements. Next an attempt is
made to bypass the restrictions and see if it can be used to
exploit the web application or not. This can be done by two
ways: either modifying the source code of the page or
intercepting/modifying the request sent by user for the page.

Consider a simple example where the user is presented with a
Request for Loan form on a website. There is a text box on the
form for entering the Loan Amount. The policy is that a user
can request not more than 99999$. The developer has
implemented this policy by validating input on the client side
which allows the user to enter only 5 digits in the text box.

The HTML code for this restriction is

<input name= “LoanAmount” maxlength=5>

The developer has not put any check on the server side for the
amount entered. Now users cannot submit a request for more
than 99999$ loan. But what if the user just check the source
code, find the max length attribute, changes the value from 5
to 7, save the changes and then resubmits the form with a
request for 1000000$. It will be accepted immediately as there
is no check on the server side for the amount and the user will
be granted 1000000$ loan. The same thing can be done by
intercepting the HTTP requests on the fly, using a proxy and
modifying the maxlength of the parameter and then
submitting the modified request to the server. This flaw can be
corrected by putting some validation mechanism at server
side.

Similarly other validation mechanisms can be enforced using
client-side scripting languages for example JavaScript,
VBScript etc. These languages can be used to perform a variety
of useful things but their most common use is validating the
input as the user enters data. Client side scripts are based on
an event driven model, i.e. the scripts are run when the user
clicks on submit button or move the curser over some control
etc. Client side validation is useful because the user come to
know about the error messages very quickly and can correct it
without waiting for sending the requests to server and then
waiting for the response. Thus client side validation is used for
performance and usability but it has no security benefit.

Therefore server side checking is required for security
purposes. Once server side checks are in place, the client side
checks can be provided for immediate response to the
legitimate users and reducing the amount of invalid traffic to
the server. An important thing to remember is “Never trust
client side data”.

Huge number of attacks can be avoided by validating input
parameters at appropriate place. The developer must validate
input parameters against a “positive” specification that
defines:

• Data type (string, integer etc)

• Allowed character set

• Min and max length

• Whether null is allowed

• Whether the parameter is required or not

• Whether duplicates are allowed

• Numeric range

• Specific legal values (enumeration)

• Specific patterns (regular expressions)

8.2 State based Attacks

Web is stateless; it does not have any mechanism to remember
which page a user browsed previously. Each page is presented
to the user without any prior knowledge of previous pages or
restrictions where they can go next. The property of
statelessness does not effect static applications but when it
comes to dynamic applications; it can lead to enormous errors
and security violations. Consider a web application for online
shopping which maintains no state information and you can
go to the previous page where the credit card number was
entered. If you can jump directly to the page where the receipt
was displayed, you can shop extra items without paying for
them.

Web application developer is responsible for maintaining state
in the application and enforcing restrictions where page access
is important. The growing trend of dynamic websites and
shopping carts, purchase history, shipment tracking features
require some state to be made available to the web application.

8.3 SQL Injection

When a web application accept inputs from users and pass
that input to the database or CGI processor without ensuring
that the data is valid, the attacker can use SQL commands in
the input to extract unauthorized information, read/write or
delete files on the system and execute arbitrary SQL
commands by the backend database. This vulnerability is
called SQL Injection. Programmers often chain together SQL
queries with input parameters provided by user, which give
chance to attackers to embed SQL commands inside these
parameters. As a result an attacker is able to execute arbitrary
SQL queries/commands on the backend database via web
application.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1536
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

8.4 Directory Traversal

All web applications are stored at some central location
(server). Static and dynamic web pages that are stored at the
server are presented to clients by web servers (along with Web
applications). The users visiting the server should be restricted
to only those pages for which they are allowed to view. In
directory traversal attack a malicious user determine the
location of restricted files and tries to view/execute them. For
example an attempt may be made to view the local password
file or modify the contents of the website by executing some
files.

8.5 Buffer Overflow

In buffer overflow attack an attempt is made to manipulate the
execution stack by sending a large amount of data to the
application. An attacker can cause the application to execute
arbitrary code and may take over the machine.

According to CERT, “Buffer overflow accounted for more than
50% of all major security bugs”. Some of the well-known
internet worms Code Red, Slapper and Slammer also used
buffer overflow for their execution.

9 Web Application Security Testing

The Web application vulnerabilities are increasing day by day
and hackers are trying to put more effort in this field. There-
fore it is necessary to check your web applications for security
issues in order to find out any holes in them which can be ex-
ploited. This requires testing your web application from a
hacker’s perspective. It can be accomplished through Black
box testing. In black box testing the internal structure (source
code) of the application is not known to the tester and the ap-
plication is considered as a black box accepting inputs, pro-
cessing them and producing outputs. Generally speaking two
approaches are used for Penetration testing of web applica-
tions to evaluate their security. One is manual and other is
automatic. The following section discusses the advantages and
disadvantages of each approach.

9.1 Manual Testing

In manual testing, security of a web application is tested by a
security professional(s). Initially manual approach may look
cheaper but when the amount of work increases, the associat-
ed cost also increases. Manual approach may be good for
small web applications but not for dynamic web applications
that consists of more than 500 pages. This lack of scaling prop-
erty makes these tests inefficient. Beside this, manual ap-
proach often takes longer time. Imagine a security analyst who
is analyzing a web application which consists of more than 400
pages and each page contains approximately 100 parameters
(input fields). Checking for only single vulnerability like SQL
Injection on all of these input fields will take a huge amount of
time. Manual approach is also labour intensive which means
that it requires a lot of effort from security professional per-
forming the test. Another disadvantage of manual testing is

that it is highly dependent on the security experts who per-
form the test, thus when they leave the organization for what-
ever reason, the organization losses the expertise in this area.
If the security tester is an expert in the area and possesses the
abilities and expertise to deal with a variety of circumstances,
the manual approach can be very advantageous in that case.
Security experts can uncover the logical vulnerabilities which
an automated tool might miss. For example an unauthorized
funds transfer might not be detected by automated tool but a
highly qualified security analyst can identify it. This property
of manual testing approach minimizes the number of false
positive results that are often generated by automatic tools. As
web applications are unique. This uniqueness and evolving
nature of web applications can be carefully analyzed only by
human, not an automated tool. A tool may be good for one
web application but might not achieve best result for another
web application’s structure.

9.2 Automatic Testing

An alternative of manual testing is to use automated testing
tool for evaluating the security of a web application. Many
organizations are now following this approach in order to
minimize the dependency on humans. These automated tools
are sometime called attack simulators since they replicate the
actions of an attacker. The main aim of these tools is to find
out vulnerabilities in the web application and report them.
Automatic testing tools are very fast as compared to manual
testing approach because they significantly reduce the time of
assessment. More than one web application can be tested with
them in a very short time. Generally they are cheaper than the
price paid to the security professionals for their time and ef-
fort. Thus an organization acquires a security tool and can run
it from time to time against a target web site to find vulnera-
bilities. Besides the advantages, automated tools also have
some shortcomings;

• These tools can find out only those vulnerabilities for
which they are coded. It always takes sometime be-
fore a new exploit is discovered and added to the list
of automated probes. It works like an antivirus pro-
gram that relies on signature .data files.

• Automated cannot uncover logical flaws in a web ap-

plication. For example an unauthorized funds transfer
from a bank account or user impersonation might not
be detected by automated tool.

• Automated tools may create many false positives be-

cause they are not as flexible and efficient as a securi-
ty professional.

• To test full functionality of a web application it is nec-

essary to log in to the application. It becomes a chal-
lenge for an automated tool to log in to the web appli-
cation automatically because the log in process is dif-
ferent for different application, for instance some re-
quire SSL, multiple pieces of authentication infor-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1537
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

mation beyond the simple username and password
and multiple re-directs.

• An automated tool may not be able to detect when it

is logged out from the application due to some rea-
son, for instance timing out, application errors or ses-
sion expiration etc.

• Creating an accurate structural map for a complex

web application in a reasonable amount of time is not
an easy task to be performed automatically.

• Almost all automated tools rely on errors and re-

sponse codes for finding vulnerabilities but applica-
tion developers often customize or even remove these
error messages. Therefore a tool may not be able to
determine the meaning of an error message which re-
sults in a false positive.

• Various strange URL structure exists these days. It is

difficult for an automated tool to find the web appli-
cation name, parameter names and their associated
values when there is no question mark and no delim-
iter like “&” signs in a URL or there is some strange
file extension. For example;
/hue/sbc/b4in345/rfe=234_3/07~3454/owen/pid=2
34454/s=home/search/view/main_id/23435/

• Traversing a website for an automated tool extremely

tough when the website has client side generated
links which are created at run time by menus and
style sheets.

9.3 The best of both (Combination of software and
security personnel)

An automated tool for web application security testing can
alleviate a huge work load but the tool alone cannot be ex-
pected to give 100% accurate results. Automated tools can
identify most of the technical vulnerabilities but they fail to
spot logical vulnerabilities while manual approach being good
in identifying logical vulnerabilities is not efficient to find out
the technical ones or even the logical. It has been historically
proven that neither automated testing approach nor manual
testing alone can spot all kinds of vulnerabilities in web appli-
cations. One of the research conducted by Watchfire on 100
websites, showed that in 17% of the websites humans identi-
fied those vulnerabilities that were left by scanners and in 36%
of websites human identified zero vulnerabilities beyond the
scanner while in 47% both produced complementary results.
According to James Spooner, managing director of security
consultancy, Lodoga: “ if you take some of the best of breed
commercial tools and ran them blindly, pressed all the quick
assessment buttons, you would actually end up with some
pretty bad results because what’s important is that the explo-
ration of a website is done properly so that you haven’t creat-
ed false results about what the website contains, so when the
tool runs its assessment against those results it will believe

that it is inducing errors which you assume are vulnerabilities.
This is why the human bit is so important it involves a combi-
nation of manual skills and tools.”

According to Michael Gavin Senior analyst, Forrester Research
Inc: “Fancy tools aren’t enough. Automated testing tools can’t
replace smart QA people. Just as attackers use tools and their
own expertise, you need to combine tools and expertise to
fight them” . On another occasion he said that: “If you just use
a tool, you're only as secure or as good as the tool is”. He also
said that “Alot of the automated tools do fuzzing, which is
basically throwing random junk into input fields and seeing
what comes back. But what we haven't seen from most is the
ability to customize the fuzzingm, and even if the tool can be
customized, testers need some knowledge about what the tool
is doing and how the software is reacting to it. That enables
you to perform a more complete test." And, he added, "If the
tool isn't doing a good job fuzzing, or it just stock tests that
don't break the application, then you will get false sense of
security. Automation is great, but you need to apply extra
knowledge."

Therefore the best approach towards the assessment of web
application security is to use a combination of software and
security. In this approach, a highly qualified security profes-
sional tests the security of a web application with the help of
software tools. Using a combination of software and security
personnel can result in the following benefits.

• All technical and logical security issues can be identi-
fied. Technical vulnerabilities can be efficiently identi-
fied by automated tool while the logical vulnerabili-
ties which could be missed by the software, can be
identified by security professional by careful analysis.

• Volume of false positives can be reduced. Software

can apply various tests on a web application and cus-
tomized error messages and response codes generat-
ed can better be analyzed by security professionals.
This will reduce the number of false positive results
which could occur if the software is used alone.

• The unique and evolving nature of websites require a

human to select suitable tests for a particular web site,
to be applied by the software. In this way large web-
sites can be tested quickly and efficiently.

• A logged in state can be maintained using a combina-

tion of software and security personnel. If the soft-
ware is logged out at some point, security personnel
can detect it and log in again before the software pro-
ceed to next test.

• Software tools can remotely scan without source code

accessibility. They can quickly crawl through a web-
site and find out all the links associated with that do-
main. Human interaction will enhance this process to
carefully map the website and remove the bad links.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1538
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

• Security personnel can also apply the tests to find out

recently discovered vulnerabilities which may not be
hard coded in the software version released.

• Security personnel can help the software to recognize

the strange URL structure which may not be coded in
the software.

10 ANALYSIS OF RESULTS

In this research work we analyze the results obtained from our
developed software Proxy Security Evaluation Tool. Therefore
once the system was successfully developed, we tested it on dif-
ferent web sites and collected the data. For finding vulnerabilities,
we have used a sample Web Server (and web application) called
WebGoat. WebGoat is a project of Open Web Applicatoin Securi-
ty Project (OWASP) that aims at the learning of Web applications
vulnerabilities.

11 CONCLUTION
A Web application security has become an important issue. New
vulnerabilities are being discovered in these applications which
are threatening the companies doing business over the internet.
There has been a significant development in the testing of web
applications for finding vulnerabilities in them. Various tools
have been developed for this purpose and companies are using
these tools. In this study we looked at the latest vulnerabilities
that may exist in today’s web applications and the methods to
identify them. We have thoroughly analyzed most of the freely
available tools for testing web application security and also some
commercial ones.

The analysis of these tools showed that they cannot make a com-
prehensive evaluation of web applications security and often
produce false positives. These tools are only good for a limited
number of tests and also most of these tools cannot withhold a
session while the tests are in progress. We also looked at the
manual approach in which a security professional thoroughly
analyzes a web application for security measures without the
help of any software tool. This manual method also cannot un-
cover all the vulnerabilities and is time consuming as well as la-
bour intensive.

We state that the best approach towards the web application se-
curity is combination of both manual and automated approach.
Therefore we developed such a tool that has the flexibility to be
adapted to the unique nature of a web application by someone
who has expertise in the area of web application security. The
developed tool was named Proxy Security Evaluation Tool. The
developed tool was tested against some sample web sites and the
results were analyzed. We were able to solve the session breaking
problem by replaying the previous HTTP requests automatically
before applying the next test patterns or next tests. The results
obtained from the tool showed that this combined approach of
using a tool with human expert is a better solution than using any
one of them separately.

12 FUTURE STUDY
There are some issues that can be solved by further investiga-
tion and improvement in the developed Proxy Security Evalu-
ation Tool.

13 ACKNOWLEDGEMENT

Thanks to Dr. Christer Magnusson, Mikeal Simovits and An-
ders Knuttsson, for their valuable supports throughout this
research work.

14 REFERENCES

[1] U5 Security Myths
http://www.varbusiness.com/showArticle.jhtml?articleID=2
2104030&flatPage=true; April 2006
http://www.gartner.com/; April 2006
http://www.webappsec.org/projects/whid/statistics.shtml;
April 2006

[2] 9 Ways to hack a web application by Martin Nystrom
http://developers.sun.com/learning/javaoneonline/2005/we
btier/TS-5935.html; April 2006
http://www.sans.org/; April 2006
http://www.owasp.org/; April 2006
http://www.webappsec.org/; April 2006

[3] Web application security: Automated scanning or Manual
Penetration testing? By Danny Allan, Strategic Research Ana-
lyst Watchfire, available at
http://www.watchfire.com/news/whitepapers.aspx ; May
2006

[4] Vulnerability assessment tools, Network Security, July 2003
by Elspeth Wales
http://www.compseconline.com/hottopics/hottopic_Nov03/
hottopic_Nov_03.html. May 2006
http://www.watchfire.com/products/appscan/powertools.a
spx

[5] Trends 2006: Application Security by Micheal Gavin Fores-
tor Inc.Tting
http://www.expresscomputeronline.com/20060306/manage
ment02.shtml, May 2006

[6] Want secure software? Think like an attacker By Colleen
Frye
http://searchappsecurity.techtarget.com/originalContent/0,2
89142,sid92_gci1167677,00.html; May 2006

[7] Technology alone cannot defeat Web application attacks:
Understanding technical vs.logical vulnerabilities by Jeremiah
Grossman 05.23.2006, Available at
http://searchappsecurity.techtarget.com/tip/1,289483,sid92_
gci1189767,00.html?bucket=ETA; May 2006

[8] Web Applications (Hacking Exposed) (Paperback) by Joel
Scambray, Mike Shema

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1539
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

http://lynx.browser.org; April 2006
http://www.gnu.org/software/wget/wget.html; April 2006

[9] OWASP Top Ten Most Critical Web Application Security
Vulnerabilities available at
http://www.owasp.org/documentation/topten.html; April
2006

[10] How to Break Web Software by Mike Andrews, James
A.Whittaker
http://www.imperva.com/application_defense_center/gloss
ary/cookie_poisoning.html;April 2006
http://www.spidynamics.com/papers/SQLInjectionWhitePa
per.pdf; April 2006

[11] Testing Your Web Applications for Cross-Site Scripting
Vulnerabilities by Chris Weber, Casaba Security, LLC Pub-
lished: May 6, 2005
http://www.cert.org/; April 2006
http://www.imperva.com/application_defense_center/gloss
ary/buffer_overflow.html;April 2006
http://www.ntobjectives.com/freeware/index.php; April
2006
http://www.ruby-lang.org/en/; date: 2006-04-20
http://www.owasp.org/software/webscarab.html; April
2006
http://www.systegra.com/; April 2006

[12] Web Hacking Attacks and Defense by Stuart McClure,
Saumil Shah and Shreeraj Shah
http://www.mentalis.org/soft/projects/seclib/docs/; Dec
2006
http://www.owasp.org/index.php/OWASP_WebGoat_Proje
ct; Dec 2006.

IJSER

http://www.ijser.org/

	1 Introduction
	1.1 Web Application Security Consortium:
	It is an international group of experts, industry practitioners and organizational representatives that produces open source and best practices security standards for World Wide Web.
	1.2 Open Web Application Security Project (OWASP)
	This group is dedicated towards finding and fighting the causes of insecure software. It produces free, unbiased, opensource documentation, tools and standards in the area of web application security. Most organizations use penetration testing for eva...
	In contrast automated tools are very fast, efficient and cost effective. But most of these tools are efficient only in finding some specific set of technical vulnerabilities like SQL Injection or cross site scripting. Another major problem with these ...
	In order to provide a comprehensive solution for detecting web application vulnerabilities, a combination of manual and automated testing approach is needed. In this way security personnel are equipped with a tool that can reduce much of their work lo...
	2 Problem
	3 Goal

	4 Audience
	5 Limitations
	The limitations Listed:
	• Proxy security evaluation tool will work only with the Internet Protocol HTTP/HTTPS.
	• The platform for the proxy security evaluation tool will be Windows.
	• Automatic Web Crawling function will not be implemented from scratch. In case it is needed, some open source web crawler will be embedded in the tool.
	• The Proxy Security Evaluation Tool (PSET) will not have any security functions itself.
	6 Researchmethodology
	7 Web Hacking Methodology
	Most companies are now moving towards the web for delivering their services, this has caused the attackers to pay most attention to identify and exploit vulnerabilities in web applications.
	8.1 Unvalidated Input and Client Side Validation
	Attacking client is considered an easy attack by web hackers. There are two reasons: one is that the application may accept input from users without validation, and the other is that input validation is usually performed only on client side. Web appli...
	Many web applications allow users to make choices about different things. For example choosing between Jobs, Gender, types of Credit Cards, Country names etc. This facility is usually provided in the form of user interface controls which consist of te...
	First step in this attack is to identify all input vectors in the web application and carefully analyze input restrictions that each user interface control implements. Next an attempt is made to bypass the restrictions and see if it can be used to exp...
	Consider a simple example where the user is presented with a Request for Loan form on a website. There is a text box on the form for entering the Loan Amount. The policy is that a user can request not more than 99999$. The developer has implemented th...
	The HTML code for this restriction is
	<input name= “LoanAmount” maxlength=5>
	The developer has not put any check on the server side for the amount entered. Now users cannot submit a request for more than 99999$ loan. But what if the user just check the source code, find the max length attribute, changes the value from 5 to 7, ...
	Similarly other validation mechanisms can be enforced using client-side scripting languages for example JavaScript, VBScript etc. These languages can be used to perform a variety of useful things but their most common use is validating the input as th...
	Huge number of attacks can be avoided by validating input parameters at appropriate place. The developer must validate input parameters against a “positive” specification that defines:
	 Data type (string, integer etc)
	 Allowed character set
	 Min and max length
	 Whether null is allowed
	 Whether the parameter is required or not
	 Whether duplicates are allowed
	 Numeric range
	 Specific legal values (enumeration)
	 Specific patterns (regular expressions)
	8.2 State based Attacks
	Web is stateless; it does not have any mechanism to remember which page a user browsed previously. Each page is presented to the user without any prior knowledge of previous pages or restrictions where they can go next. The property of statelessness d...
	Web application developer is responsible for maintaining state in the application and enforcing restrictions where page access is important. The growing trend of dynamic websites and shopping carts, purchase history, shipment tracking features require...
	8.3 SQL Injection
	When a web application accept inputs from users and pass that input to the database or CGI processor without ensuring that the data is valid, the attacker can use SQL commands in the input to extract unauthorized information, read/write or delete file...
	8.4 Directory Traversal
	All web applications are stored at some central location (server). Static and dynamic web pages that are stored at the server are presented to clients by web servers (along with Web applications). The users visiting the server should be restricted to ...
	8.5 Buffer Overflow
	In buffer overflow attack an attempt is made to manipulate the execution stack by sending a large amount of data to the application. An attacker can cause the application to execute arbitrary code and may take over the machine.
	According to CERT, “Buffer overflow accounted for more than 50% of all major security bugs”. Some of the well-known internet worms Code Red, Slapper and Slammer also used buffer overflow for their execution.
	9 Web Application Security Testing

	11 Conclution
	12 Future Study

